The synthesis and crystal structures of pyridine-2,6-dicarboxamide oxime, $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}$, and its nickel(וI) and copper(ו) co-ordination compounds

B rad A. B ovenzi and George A. Pearse, J r.*

Department of Chemistry, Le M oyne College, Syracuse, N ew York, U SA 13214

The crystals of pyridine-2,6-dicarboxamide oxime, $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}$, are monoclinic, space group $\mathrm{P} 2_{1}$ with $\mathrm{a}=7.569$ (1), $b=4.695(1), c=12.534(2) \AA, \beta=106.50(2)^{\circ}$ and $Z=2$. The reaction of the ligand with nickel(II) sulfate hexahydrate yielded purple crystals of formula $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)_{2}\right]\left[\mathrm{SO}_{4}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ which crystallized in the triclinic space group P 1 with $a=7.502(1), b=11.493(2), c=15.526(1) \AA, \alpha=104.60(1)^{\circ}, \beta=101.91(6)^{\circ}, \gamma=97.35(1)^{\circ}$ and $Z=2$. The reaction of the ligand with copper(II) sulfate pentahydrate resulted in a green crystalline complex of formula $\left[\left\{\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)\left(\mathrm{SO}_{4}\right)\right\} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{n}$ which crystallized in the monoclinic space group $\mathrm{P} 2 / \mathrm{n}$ with $\mathrm{a}=10.427(3)$, $b=8.876(2), c=13.777(4) \AA, \beta=93.254(1)^{\circ}$ and $Z=4$. The nickel complex consists of discrete $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)_{2}\right]^{2+}$ cations and sulfate anions, the cation existing in a slightly distorted octahedral complex with bonding through the heterocyclic and oxime nitrogen atoms. The copper complex consists of a two-dimensional polymeric chain of $\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)$ units connected by bridging sulfate groups.

The literature contains reports of the structure of amide oximes (amidoximes) which can co-ordinate as bi-, ${ }^{1-3}$ tri-, ${ }^{4}$ tetra- ${ }^{5}$ and hexa-dentate ${ }^{6}$ ligands. The majority of these amidoximes are aliphatic compounds which form five-membered rings utilizing the diimine moiety, $-\mathrm{N}=\mathrm{C}-\mathrm{C}=\mathrm{N}-$, involving oxime and imine nitrogens as the co-ordination sites with transition-metal atoms Pyridine-2,6-dicarboxamide oxime (pyridine-2,6-diamidoxime), $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{I}$, Fig. 1, possesses the structural requirements to react as a tridentate ligand with the heterocyclic and two oxime nitrogen atoms forming five-membered rings with transition-metal ions.

Compound I has been used in the spectrophotometric determination of iron(III) in strong alkaline solutions, ${ }^{7}$ however the literature contains no references to the structure of I or to the synthesis and structure of its solid transition-metal coordination compounds. This research was carried out with the specific purpose of determining the structure of I as well as those of the complexes formed with nickel(II) sulfate and copper(II) sulfate.

The results of this investigation are compared with other potentially tridentate ligands having a pyridine ring substituted at the 2,6 positions, i.e. pyridine 2,6 -dihydroxamic acid pyridine-2,6-dicarboxylic acid and 2,2': $6^{\prime}, 2^{\prime \prime}$-terpyridine.

Experimental

2,6-D icyanopyridine was synthesized from pyridine-2,6 dicarboxylic acid (A Idrich Chemical Co.) according to the procedure of Banks and Brookes. ${ }^{8}$ Density measurements were made by the flotation method using a mixture of diethyl ether and carbon tetrachloride for pyridine-2,6-diamidoxime and a mixture of benzene and 1,2 -dichloroethane for the nickel and copper complexes. M icroanalyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) were performed by Galbraith Laboratories, Inc., K noxville, TN. M etal and anion analyses were performed using gravimetric procedures

Preparation of pyridine-2,6-diamidoxime, $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{I}$

An aqueous solution ($100 \mathrm{~cm}^{3}$) containing hydroxylamine hydrochloride ($4.86 \mathrm{~g}, 70 \mathrm{mmol}$) neutralized with sodium hydroxide ($2.8 \mathrm{~g}, 70 \mathrm{mmol}$) was added to ethanol ($100 \mathrm{~cm}^{3}$) containing 2,6-dicyanopyridine ($3.87 \mathrm{~g}, 30 \mathrm{mmol}$). The reaction mixture was heated at $70^{\circ} \mathrm{C}$ with stirring for 0.5 h , and upon

Fig. 1 Crystal structure of $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{I}$ showing the atomic numbering scheme
cooling to $10^{\circ} \mathrm{C}$ yielded I (5.21 g, 89\%), m.p. $214^{\circ} \mathrm{C}$ (decomp.) (Found: C, 42.98; H, 4.51; $\mathrm{N}, 35.78 . \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires C , 43.07; H, 4.65; N, 35.88\%). $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ (K Br disc): 3486 (asym) and 3421 (sym) (NH); 3421 and 3276 (sym) (OH); 1656 (sym) ($\mathrm{C}=\mathrm{N}$); 958 (sym) (NO). NMR [(CD $)_{2}$ SO; standard SiM e e_{4} : $\delta_{\mathrm{H}}(250 \mathrm{M} \mathrm{Hz}) 9.86(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NO} 0-\mathrm{H}), 7.85\left(\mathrm{~m}, \mathrm{AB}_{2}, 3 \mathrm{H}\right.$, pyridine ring), $6.29\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NH}_{2}\right) ; \delta_{\mathrm{c}}(90 \mathrm{M} \mathrm{Hz}) 202.0\left(\mathrm{C}^{6}\right.$ and $\left.\mathrm{C}^{7}\right)$, 201.4 $\left(C^{1}\right.$ and $\left.C^{5}\right), 189.1\left(C^{3}\right), 171.6\left(C^{2}\right.$ and $\left.C^{4}\right)$.

Preparation of bis(pyridine-2,6-diamidoxime)nickel(II) sulfate pentahydrate, $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)\right]\left[\mathrm{SO}_{4}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O} \quad 1$

Solid I ($3.90 \mathrm{~g}, 20 \mathrm{mmol}$) was added to a heated aqueous solution ($100 \mathrm{~cm}^{3}$) containing nickel(II) sulfate hexahydrate (2.63 g , $10 \mathrm{mmol})$. The resulting purple solution was stirred at $80-90^{\circ} \mathrm{C}$ for 1 h and allowed to stand overnight at room temperature. The resulting purple crystals of 1 were filtered off and washed with absolute ethanol and diethyl ether ($5.30 \mathrm{~g}, 83.5 \%$) \{Found: $\mathrm{C}, 26.31 ; \mathrm{H}, 4.31 ; \mathrm{N}, 21.93 ; \mathrm{Ni}, 9.11 ; \mathrm{SO}_{4}, 14.86$. [$\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)$]$\left[\mathrm{SO}_{4}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 26.47 ; \mathrm{H}, 4.44 ; \mathrm{N}, 22.05 ; \mathrm{Ni}, 9.24 ; \mathrm{SO}_{4}$, 15.12% \}. $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ ($\mathrm{K} \mathrm{Br} \mathrm{disc):} 3546$ (asym) and 3420 (sym) (NH); 3169 (sym) (OH); 1655 (sym) (C=N); 917 (sym) (NO).

Preparation of (pyridine-2,6-diamidoxime) copper(ı) sulfate dihydrate, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 2$

Solid I ($3.90 \mathrm{~g}, 20 \mathrm{mmol}$) was added to a heated aqueous solution ($100 \mathrm{~cm}^{3}$) containing copper(II) sulfate pentahydrate (2.50 $\mathrm{g}, 10 \mathrm{mmol}$). This resulted in an almost immediate precipitation of a green complex contaminated by excess ligand. The con-

Table 1 Summary of crystal data

Compound	$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}$	[$\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right) \mathrm{l}$ [$\left.\mathrm{SO}_{4}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$	$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
M	195.18	635.21	390.82
T/K	223(2)	223(2)	223(2)
Crystal system	M onoclinic	Triclinic	M onoclinic
Space group	P 21	P1	P $21 / \mathrm{n}$
a/Å	7.569(1)	7.502(1)	10.427(3)
b/Å	4.695(1)	11.493(1)	8.876(2)
c/Å	12.534(2)	15.526(1)	13.777(4)
$\alpha /{ }^{\circ}$	-	104.60(1)	-
$\beta /{ }^{\circ}$	106.50(2)	101.96(1)	93.254(1)
$\gamma /{ }^{\circ}$	-	97.35(1)	-
U / A^{3}	427.12(1)	1244.29(3)	1273.02(1)
Z	2	2	4
$\mathrm{D}_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.518	1.669	2.039
$\mathrm{Dm}_{\mathrm{m}} / \mathrm{g} \mathrm{cm}^{-3}$	1.510	1.656	2.024
Crystal size/mm	$0.40 \times 0.32 \times 0.07$	$0.40 \times 0.32 \times 0.26$	$0.050 \times 0.30 \times 0.30$
$\lambda(\mathrm{M} \mathrm{o-K} \alpha) / \AA$	0.71073	0.71073	0.71073
Transmission factors (max, min)	0.8223, 0.7599	0.8549, 0.7585	0.8326, 0.6066
D ata collection range ($\theta /{ }^{\circ}$)	1.69-28.23	1.87-28.30	2.39-28.25
F (000)	204	640	796
R eflections measured	2599	7891	7815
Observed reflections	1618	5578	2976
R [$1>2 \sigma(1)]$	0.0713	0.1141	0.0737
$\mathrm{R}^{\prime *}$	1.1413	0.1441	0.0737
L argest difference peak, hole/e \AA^{-3}	0.067, -0.361	0.105, -0.675	0.093, -0.661
G oodness of fit	1.101	1.052	1.128

Full-matrix least-squares refinement on F^{2}; semiempirical absorption correction based on ψ scans. * Weighting scheme $w=1 /\left[\sigma^{2}(F)+0.0022 F^{2}\right]$.
taminant was removed by filtering the reaction solution at the boiling point yielding 2 ($3.02 \mathrm{~g}, 77.3 \%$) \{Found: C, 21.36; H, 3.25; $\mathrm{Cu}, 16.40 ; \mathrm{N}, 17.77 ; \mathrm{SO}_{4}$, 24.37. [$\left.\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)\left(\mathrm{SO}_{4}\right)\right]$. $2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 21.51 ; \mathrm{H}, 3.35 ; \mathrm{Cu}, 16.26 ; \mathrm{N}, 17.92 ; \mathrm{SO}_{4}$, $24.58 \%\}$. $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ (K Br disc): 3481 (asym) and 3351 (sym) (NH); 3162 (sym) (OH); 1658 (sym) (C=N); 908 (sym) (NO).

X-R ay crystallography

Slow evaporation of dilute aqueous solutions of \mathbf{I} and $\mathbf{1}$ at room temperature yielded crystals suitable for X-ray crystallographic analysis. Crystals of $\mathbf{2}$ were obtained from a saturated aqueous solution. All geometric and intensity data were taken using an automated four-circle Siemens SM ART X-ray diffractometer. Pertinent crystallographic data are given in Table 1. Intensity data were reduced by routine procedures and calculations were carried out by the application of the direct methods program SOLV of SHELXTL. ${ }^{9}$ The determination of the space group for the ligand involved a comparison of the values for $N($ total), $N($ int $>3 \sigma$), mean intensity and mean intensity/ σ for the lattice exceptions. The values for these parameters for a P-type lattice are 0 . From this, the crystal system M and the lattice type P were selected and a mean $\left[E^{\mathrm{E}-1}\right]$ value of 0.717 was calculated. This value, when compared to the expected mean values of 0.968 for the centrosymmetric and 0.736 for the non-centrosymmetric systems, indicates a noncentrosymmetric system. Systematic absence exceptions indicate that a 2(1) screw axis is present. In addition, P 2(1)/m gives unreasonable structures for the centric configuration, therefore the chosen model was deemed appropriate. Hydrogen atom positions were calculated in idealized positions.

A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. C hem. Soc., D alton Trans., 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/565.

Results and D iscussion

The literature does not appear to contain any references con-
cerning the structure of pyridine-2,6-diamidoxime I or solid complexes formed by it and transition-metal ions. This ligand was prepared by the reaction of an ethanolic solution of 2,6 dicyanopyridine with a neutralized aqueous solution of hydroxylamine hydrochloride giving I (Fig. 1) as the only solid product. The infrared spectrum of I shows four bands between 3500 and $3000 \mathrm{~cm}^{-1}$. If the 3486 and $3421 \mathrm{~cm}^{-1}$ absorptions are assigned as the v (asym) and v (sym) NH stretching frequencies, respectively the two additional bands can be assigned to OH stretching frequencies. These two OH bands can arise from $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding, both of which are present in the uncomplexed solid ligand. Two such OH stretching frequencies are observed in solid oximes ${ }^{10}$ and the probability of such hydrogen bonding is greater in amidoximes. Deuteriation of I by recrystallization from 99.5\% deuterium oxide results in the disappearance of the N H and OH stretching frequencies. Three bands which appear at 2612, 2566 and 2383 cm^{-1} are assigned to $v($ asym $) N D, v($ sym $) N D$ and OD, respectively. The ${ }^{1} \mathrm{H} N \mathrm{M}$ R shifts are listed in the Experimental section, however it should be noted that the NH and OH peaks are both concentration and temperature dependent. In addition both peaks disappear upon shaking the sample with 1 drop of $\mathrm{D}_{2} \mathrm{O}$, showing the lability of these hydrogens.

The crystal structure of I (Fig. 1) shows that the solid ligand crystallizes in the amide oxime ($\mathrm{CNH}_{2}=\mathrm{NOH}$), rather than the hydroxylamine imine ($\mathrm{CNHOH}=\mathrm{NH}$) structure which conforms with all other reported amidoximes.
A nalysis of the packing diagram for I shows considerable hydrogen bonding between the ligand molecules. This hydrogen bonding involves amine hydrogens with oxime oxygens and amine hydrogens with amine nitrogens. In addition, oxime hydrogens of one molecule are hydrogen bonded to oxime oxygens of a second molecule. This considerable hydrogen bonding supports the infrared stretching assignments given for NH and OH .
Selected bond lengths and angles for several amidoxime ligands arelisted in Table 2. The $\mathrm{C}=\mathrm{N}$ and NO bond lengths of the oxime group for the six listed compounds are quite comparable with those of pyridine-2,6-diamidoxime. The bond angles for $\mathrm{C}=\mathrm{N}-\mathrm{O}$ of the oxime group and $\mathrm{N}=\mathrm{C}-\mathrm{N}$ of the amidoxime group show little variation with the exception of those for 2-

Table 2 Comparison of selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of the amidoxime group

Compound	$\mathrm{C}=\mathrm{N}$	$\mathrm{N}-\mathrm{O}$	$\mathrm{C}=\mathrm{N}-\mathrm{O}$	$\mathrm{N}=\mathrm{C}-\mathrm{N}$	Ref.
N-Benzoyl-syn-benzamidoxime	1.272	1.438	110.7	123.9	11
2,2'-Iminobis(acetamidoxime)	1.278	1.426	109.0	125.6	12
2-(3,4-M ethylenedioxy phenyl)-2-hydroxy-	1.284	1.435	110.0	125.1	13
2-acetamidoxime					
Formamidoxime	1.288	1.415	109.7	126.7	14
2-M ethyl-N ,N-dimethylbenzamidoxime	1.287	1.424	112.1	117.7	15
Pyridine-2-amidoxime	1.291	1.419	109.1	123.4	1
Pyridine-2,6-diamidoxime	1.288	1.434	108.7	125.1	This work

Table 3 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)\right]-$ $\left[\mathrm{SO}_{4}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O} 1$

$\mathrm{Ni}(1)-\mathrm{N}(1 \mathrm{~A})$	$2.007(2)$	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	$1.400(4)$
$\mathrm{Ni}(1)-\mathrm{N}(2 \mathrm{~A})$	$2.132(2)$	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	$1.368(5)$
$\mathrm{Ni}(1)-\mathrm{N}(4 \mathrm{~A})$	$2.117(2)$	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	$1.387(5)$
$\mathrm{Ni}(1)-\mathrm{N}(1 \mathrm{~B})$	$2.002(2)$	$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	$1.393(4)$
$\mathrm{Ni}(1)-\mathrm{N}(2 \mathrm{~B})$	$2.136(2)$	$\mathrm{C}(5 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	$1.333(4)$
$\mathrm{Ni}(1)-\mathrm{N}(4 \mathrm{~B})$	$2.124(2)$	$\mathrm{C}(6 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$	$1.298(4)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	$1.339(4)$	$\mathrm{C}(7 \mathrm{~A})-\mathrm{N}(4 \mathrm{~A})$	$1.297(4)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	$121.2(3)$	$\mathrm{Ni}(1)-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	$119.6(2)$
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	$118.6(3)$	$\mathrm{Ni}(1)-\mathrm{N}(\mathrm{AA})-\mathrm{C}(1 \mathrm{~A})$	$120.1(2)$
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{AA})-\mathrm{C}(4 \mathrm{~A})$	$120.2(3)$	$\mathrm{Ni}(1)-\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	$116.3(2)$
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	$118.2(3)$	$\mathrm{Ni} i(1)-\mathrm{N}(4 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	$116.3(2)$
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	$121.6(3)$	$\mathrm{N}(1 \mathrm{~A})-\mathrm{Ni}(1)-\mathrm{N}(4 \mathrm{~A})$	$76.2(1)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	$113.0(3)$	$\mathrm{N}(1 \mathrm{~A})-\mathrm{Ni}(1)-\mathrm{N}(2 \mathrm{~A})$	$75.7(1)$
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$	$114.8(3)$	$\mathrm{N}(1 \mathrm{~A})-\mathrm{Ni}(1)-\mathrm{N}(1 \mathrm{~B})$	$174.6(1)$

Fig. 2 Crystal structure of $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)\right]\left[\mathrm{SO}_{4}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O} 1$ showing the atomic numbering scheme. The water molecules and counter anion have been omitted for clarity
methyl-N , N -dimethylbenzamidoxime. This can be attributed to steric factors caused by the two methyl groups on the amine nitrogen which are not present in any of the other amidoximes.

The reaction of nickel(II) sulfate with I produces a purple 1:2 solid complex of formula 1 . Conductivity measurements in aqueous solution show $\mathbf{1}$ to be a 1:1 electrolyte consisting of $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)\right]^{2+}$ cations and SO_{4}^{2-} anions. The crystal structure of 1 (Fig. 2) confirms the $1: 2 \mathrm{Ni} \mathrm{\prime}$-ligand co-ordination where neither the anion nor the water molecules are involved in the co-ordination. The nickel(II) ion is six-co-ordinated through the oxime and heterocyclic nitrogens of the two ligand molecules. The resulting configuration is a slightly distorted octahedron. This distortion results from non-equivalent Ni i N bond lengths (Table 3). The two $\mathrm{Ni}-\mathrm{N}$ (imine) bond lengths are essentially equivalent but shorter than the four $\mathrm{Ni}-\mathrm{N}$ (oxime) which are not mutually equivalent. A lthough other geometrical isomers are possible, the compound investigated has the polar trans positions occupied by the heterocyclic nitrogens. The oxime nitrogens are in the equatorial plane
The two co-ordinated ligands are at approximately 90° to each other. The crystal structure of I shows the oxime nitrogens

Fig. 3 M olecular structure of $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 2$ showing the atomic numbering scheme

Fig. 4 M olecular configuration of the $\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)$ moiety in complex $\mathbf{2}$ showing co-ordination by the SO_{4} groups
are not available for tridentate co-ordination in conjunction with the pyridine nitrogen. U pon addition of nickel(II), free rotation about the $C(1)-C(6)$ and $C(5)-C(7)$ bonds results in proper positioning of the oxime nitrogens as shown in Fig. 2. This same rotation upon complexation was observed for pyridine-2-amidoxime. ${ }^{1}$ A comparison of the same bond lengths and angles for the free ligand and the nickel(II) complex shows little change in I and 1.
The reaction of I with copper(II) sulfate did not give the expected monomeric product but rather a two-dimensional linear polymer (Fig. 5). The copper atom is co-ordinated to a single ligand molecule which is tridentate using the heterocyclic and oxime nitrogens. This copper-ligand unit is bonded to two sulfate groups by $\mathrm{Cu}-\mathrm{O}$ bonds resulting in five-co-ordinated copper(II) atoms. The monomeric unit can be considered to have the formula, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Fig. 3) where the water molecules are not involved in co-ordination. The $\mathrm{Cu}-\mathrm{O}$ bonds formed between any two $\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)$ moieties with a single sulfate group are quite dissimilar in bond length. The $\operatorname{Cu}(1 \mathrm{~A})-0(3 \mathrm{~A})$ bond length is $1.901 \AA$, whereas the $\mathrm{Cu}(1 \mathrm{~A})-0(4)$ bond length is $2.379 \AA$ (Fig. 4). The arrangement of monomeric units in the polymer can be seen in Fig. 4. Alternate ligands bonded to a copper atom are parallel to each other and any two adjacent copper-bonded ligands are at 93.8° to

Fig. 5 Crystal packing diagram of $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)\left(\mathrm{SO}_{4}\right)\right]$ 2. Waters of crystallization have been omitted for clarity
each other (Fig . 5). This arrangement of ligands results in a helical configuration with respect to the axis of the copper atoms, not unlike that reported for copper(II)-carboxylate ${ }^{16}$ and -thiother-carboxylate complexes. ${ }^{17}$ A major difference is that the copper complex reported herein forms the chain through sulfate bridging groups while the carboxylate- and (thioether)carboxylate-copper(II) complexes do not involve an anionic bridge. The helix of our compound is stabilized by hydrogen bonding between adjacent chains resulting in a synanti pyridine-2,6-diamidoxime helix-like chain bridged by sulfate groups. A nother major difference in the complexation is that the copper(II)-pyridine-2,6-diamidoxime does not involve ionization of the ligand. Complexes with copper(II) and either of the two carboxylic acid ligands involve ionization of the carboxylate group to form the helical chain. A comparison of the bond lengths and angles for the free ligand (Table 4) and the copper complex (Table 5) shows little ligand distortion upon complexation. A ttempts to synthesize a non-polymeric 1:1 or 2:1 ligand: copper(II) monomeric species using copper(II) sulfate were unsuccessful. Work is in progress using the potentially non-co-ordinating copper(II) tetrafluoroborate, to negate polymer formation in the chelate.

This research has ascertained that pyridine-2,6-diamidoxime crystallizes in the amidoxime configuration, $\mathrm{C}=\mathrm{NOH}\left(\mathrm{NH}_{2}\right)$, as do all other amidoximes for which the structure has been determined. When complexed with nickel(II) sulfate pentahydrate, this ligand forms a 2:1 ligand: nickel(II) cationic complex which uses the heterocyclic and oxime nitrogens. Complexation with copper(II) sulfate results in a two-dimensional polymer consisting of $\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}\right)$ units bridged by sulfate groups through $\mathrm{Cu}-\mathrm{O}$ bonds. Polymerization is sustained by each complexed copper(II) atom reacting with the oxygen atoms of two sulfate groups.

Table 4 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{I}$

$\mathrm{N}(1)-\mathrm{C}(1)$	$1.339(6)$	$\mathrm{C}(6)-\mathrm{N}(2)$	$1.288(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.394(6)$	$\mathrm{C}(6)-\mathrm{N}(3)$	$1.364(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.384(7)$	$\mathrm{N}(2)-\mathrm{O}(1)$	$1.428(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.380(7)$	$\mathrm{C}(5)-\mathrm{C}(7)$	$1.484(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.389(6)$	$\mathrm{C}(7)-\mathrm{N}(4)$	$1.298(6)$
$\mathrm{C}(5)-\mathrm{N}(1)$	$1.348(5)$	$\mathrm{C}(7)-\mathrm{N}(5)$	$1.345(6)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.488(6)$	$\mathrm{N}(4)-\mathrm{O}(2)$	$1.436(5)$
		$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{N}(3)$	$116.9(4)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$122.6(4)$	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{O}(1)$	$109.5(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.6(5)$	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(7)$	$114.1(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.4(4)$	$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{N}(4)$	$118.5(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$118.6(4)$	$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{N}(5)$	$116.7(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	$122.6(4)$	$\mathrm{C}(7)-\mathrm{N}(4)-\mathrm{O}(2)$	$108.7(4)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	$118.1(4)$	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{N}(3)$	$12.5(4)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$115.9(4)$	$\mathrm{N}(4)-\mathrm{C}(7)-\mathrm{N}(5)$	$124.7(4)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{N}(2)$	$117.4(4)$		

Table 5 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{9}{ }^{-}\right.\right.$ $\left.\left.\mathrm{N}_{5} \mathrm{O}_{2}\right)\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 5$

$\mathrm{Cu}(1)-\mathrm{N}(1)$	$1.930(2)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.387(3)$
$\mathrm{Cu}(1)-\mathrm{N}(2)$	$2.025(2)$	$\mathrm{C}(5)-\mathrm{N}(1)$	$1.336(2)$
$\mathrm{Cu}(1)-\mathrm{N}(5)$	$2.022(2)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.492(2)$
$\mathrm{Cu}(1)-\mathrm{O}(3)$	$1.901(2)$	$\mathrm{C}(6)-\mathrm{N}(2)$	$1.304(2)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.334(2)$	$\mathrm{N}(2)-\mathrm{O}(1)$	$1.403(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.386(3)$	$\mathrm{C}(5)-\mathrm{C}(7)$	$1.486(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.396(3)$	$\mathrm{C}(7)-\mathrm{N}(5)$	$1.308(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.391(3)$	$\mathrm{N}(5)-\mathrm{O}(2)$	$1.399(2)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{O}(3)$	$172.10(7)$	$\mathrm{Cu}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	$119.01(13)$
$\mathrm{Cu}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	$118.63(13)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$112.2(2)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(7)$	$112.0(2)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{N}(2)$	$113.4(2)$
$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{N}(5)$	$113.7(2)$	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Cu}(1)$	$116.12(13)$
$\mathrm{C}(7)-\mathrm{N}(5)-\mathrm{Cu}(1)$	$115.35(13)$	$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$78.89(7)$
$\mathrm{N}(5)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$78.97(7)$		

When compared to non-amidoxime tridentate ligands, the following observations can be made. $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-Terpyridine forms only monomeric species with transition-metal ions. ${ }^{18}$ Pyridine-2,6-dihydroxamic acid is reported to form only polymeric species ${ }^{19}$ using ionized hydroxamic acid hydrogens without anionic bridging groups. In the case of pyridine-2,6dicarboxylic acid, it has been reported that the diacid can react both in a monomeric and a polymeric fashion, ${ }^{20}$ therefore pyridine-2,6-diamidoxime comes closest to the corresponding diacid in its complexation behaviour.

Acknowledgements

This research was supported in part by a grant from the Le M oyne College Research Committee. The authors also acknowledge the assistance of Professor William Jones of the U niversity of Rochester, N Y , in obtaining the crystal structures and Professor Karin Ruhlandt-Senghe for use of computer facilities at Syracuse U niversity, N Y.

References

1 G. A. Pearse, P. R. R aithby and J. Lewis, Polyhedron, 1989, 8, 301.
2 G. A. Pearse, P. R. Raithby, C. M. Hay and J. Lewis, Polyhedron, 1989, 8, 305.
3 M. N asakkala, H. Saarinem, J. K orvenranta and M. Oranrua, A cta C rystallogr., Sect. C, 1989, 45, 1514.
4 D. L. Cullen and E. C. Liugafelten, I norg. C hem., 1970, 9, 1865.
5 G. A. Pearse, P. R. R aithby and M. M. J. M aughan, Polyhedron, 1994, 13, 553.
6 G. A. Pearse and C. E. Pfluger, Inorg. C him. A cta, 1994, 227, 171.
7 M. W. Wehking, R. T. Pflaum and E. S. Tucker, A nal. Chem., 1966, 38, 1950.
8 R. Banks and R. F. Brookes, Chem. Ind., 1974, 617.
9 G. M. Sheldrick, SHELXTL 93, Program for the refinement of crystal structures, U niversity of G öttingen, 1993.

10 M. Avram and G. M ateescu, Infrared Spectroscopy, Wiley Interscience, N ew York, 1970, p. 333.
11 A. G ieren and B. D ederer, A cta C rystallogr., Sect. B, 1977, 33, 3296
12 X. Solan, C. M irravittles, J. P. Leclercq and G. Germain, A cta C rys tallogr., Sect. B, 1980, 36, 3121.
13 H. G ozlan and C. R iche, Acta C rystallogr., Sect. B, 1976, 32, 1662.
14 D. H all, A cta Crystallogr., 1965, 18, 455.
15 H. Gozlan, R. M ichelot, C. Riche and R. R ips, Tetrahedron, 1977, 33, 2535.
16 E. Colacio, J.-M. Dominguez-Vera, J.-P. Costes, R. K ivekas, J.-P. L aurent, J. Ruiz and M. Sundberg, Inorg. C hem., 1992, 31, 774.

17 K. K. N anda, A. W. Addison, E. Sinn and L. K. Thompson, Inorg. Chem., 1996, 35, 5966.

18 E. C. Constable and J. Lewis, Polyhedron, 1982, 1, 303; E. C. Constable, J. Lewis, M. C. Liptrot and P. Raithby, J. Chem. Soc., D alton Trans., 1984, 2177; E. C. Constable and J. H ealy, Polyhedron, 1991, 10, 1883.
19 A. P. Terent'ev, I. G. II'mo and E. G. Rukhadze, Vysokomol. Soedin., Ser. B, 1967, 9, 788; C hem. A bstr., 1968, 68, 1307.
20 P. Guerriero, U. Casellato, S. Sitran, P. A. Vigato and R . Graziani, I norg. C him. A cta, 1987, 133, 337.

Received 20th December 1996; Paper 6/08599G

